Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Novel Deep Learning Model for Traffic Sign Detection Using Capsule Networks (1805.04424v1)

Published 11 May 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Convolutional neural networks are the most widely used deep learning algorithms for traffic signal classification till date but they fail to capture pose, view, orientation of the images because of the intrinsic inability of max pooling layer.This paper proposes a novel method for Traffic sign detection using deep learning architecture called capsule networks that achieves outstanding performance on the German traffic sign dataset.Capsule network consists of capsules which are a group of neurons representing the instantiating parameters of an object like the pose and orientation by using the dynamic routing and route by agreement algorithms.unlike the previous approaches of manual feature extraction,multiple deep neural networks with many parameters,our method eliminates the manual effort and provides resistance to the spatial variances.CNNs can be fooled easily using various adversary attacks and capsule networks can overcome such attacks from the intruders and can offer more reliability in traffic sign detection for autonomous vehicles.Capsule network have achieved the state-of-the-art accuracy of 97.6% on German Traffic Sign Recognition Benchmark dataset (GTSRB).

Citations (77)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.