Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Trajectory Design for Distributed Estimation in UAV Enabled Wireless Sensor Network (1805.04364v1)

Published 11 May 2018 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, we study an unmanned aerial vehicle(UAV)-enabled wireless sensor network, where a UAV is dispatched to collect the sensed data from distributed sensor nodes (SNs) for estimating an unknown parameter. It is revealed that in order to minimize the mean square error (MSE) for the estimation, the UAV should collect the data from as many SNs as possible, based on which an optimization problem is formulated to design the UAV's trajectory subject to its practical mobility constraints. Although the problem is non-convex and NP-hard, we show that the optimal UAV trajectory consists of connected line segments only. With this simplification, an efficient suboptimal solution is proposed by leveraging the classic traveling salesman problem (TSP) method and applying convex optimization techniques. Simulation results show that the proposed trajectory design achieves significant performance gains in terms of the number of SNs whose data are successfully collected, as compared to other benchmark schemes.

Citations (86)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.