Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sentiment-driven Community Profiling and Detection on Social Media (1805.04191v1)

Published 10 May 2018 in cs.SI

Abstract: Web 2.0 helps to expand the range and depth of conversation on many issues and facilitates the formation of online communities. Online communities draw various individuals together based on their common opinions on a core set of issues. Most existing community detection methods merely focus on discovering communities without providing any insight regarding the collective opinions of community members and the motives behind the formation of communities. Several efforts have been made to tackle this problem by presenting a set of keywords as a community profile. However, they neglect the positions of community members towards keywords, which play an important role for understanding communities in the highly polarized atmosphere of social media. To this end, we present a sentiment-driven community profiling and detection framework which aims to provide community profiles presenting positive and negative collective opinions of community members separately. With this regard, our framework initially extracts key expressions in users' messages as representative of issues and then identifies users' positive/negative attitudes towards these key expressions. Next, it uncovers a low-dimensional latent space in order to cluster users according to their opinions and social interactions (i.e., retweets). We demonstrate the effectiveness of our framework through quantitative and qualitative evaluations.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.