Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unifying Data, Model and Hybrid Parallelism in Deep Learning via Tensor Tiling (1805.04170v1)

Published 10 May 2018 in cs.DC and cs.LG

Abstract: Deep learning systems have become vital tools across many fields, but the increasing model sizes mean that training must be accelerated to maintain such systems' utility. Current systems like Tensorflow and MXNet focus on one specific parallelization strategy, data parallelism, which requires large training batch sizes in order to scale. We cast the problem of finding the best parallelization strategy as the problem of finding the best tiling to partition tensors with the least overall communication. We propose an algorithm that can find the optimal tiling. Our resulting parallelization solution is a hybrid of data parallelism and model parallelism. We build the SoyBean system that performs automatic parallelization. SoyBean automatically transforms a serial dataflow graph captured by an existing deep learning system frontend into a parallel dataflow graph based on the optimal tiling it has found. Our evaluations show that SoyBean is 1.5x-4x faster than pure data parallelism for AlexNet and VGG. We present this automatic tiling in a new system, SoyBean, that can act as a backend for Tensorflow, MXNet, and others.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.