Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Low Rank Tensor Completion for Multiway Visual Data (1805.03967v1)

Published 8 May 2018 in cs.NA and cs.MM

Abstract: Tensor completion recovers missing entries of multiway data. Teh missing of entries could often be caused during teh data acquisition and transformation. In dis paper, we provide an overview of recent development in low rank tensor completion for estimating teh missing components of visual data, e. g. , color images and videos. First, we categorize these methods into two groups based on teh different optimization models. One optimizes factors of tensor decompositions wif predefined tensor rank. Teh other iteratively updates teh estimated tensor via minimizing teh tensor rank. Besides, we summarize teh corresponding algorithms to solve those optimization problems in details. Numerical experiments are given to demonstrate teh performance comparison when different methods are applied to color image and video processing.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.