Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

FlowFields++: Accurate Optical Flow Correspondences Meet Robust Interpolation (1805.03517v1)

Published 9 May 2018 in cs.CV

Abstract: Optical Flow algorithms are of high importance for many applications. Recently, the Flow Field algorithm and its modifications have shown remarkable results, as they have been evaluated with top accuracy on different data sets. In our analysis of the algorithm we have found that it produces accurate sparse matches, but there is room for improvement in the interpolation. Thus, we propose in this paper FlowFields++, where we combine the accurate matches of Flow Fields with a robust interpolation. In addition, we propose improved variational optimization as post-processing. Our new algorithm is evaluated on the challenging KITTI and MPI Sintel data sets with public top results on both benchmarks.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.