Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Diffusion Based Network Embedding (1805.03504v2)

Published 9 May 2018 in cs.LG and stat.ML

Abstract: In network embedding, random walks play a fundamental role in preserving network structures. However, random walk based embedding methods have two limitations. First, random walk methods are fragile when the sampling frequency or the number of node sequences changes. Second, in disequilibrium networks such as highly biases networks, random walk methods often perform poorly due to the lack of global network information. In order to solve the limitations, we propose in this paper a network diffusion based embedding method. To solve the first limitation, our method employs a diffusion driven process to capture both depth information and breadth information. The time dimension is also attached to node sequences that can strengthen information preserving. To solve the second limitation, our method uses the network inference technique based on cascades to capture the global network information. To verify the performance, we conduct experiments on node classification tasks using the learned representations. Results show that compared with random walk based methods, diffusion based models are more robust when samplings under each node is rare. We also conduct experiments on a highly imbalanced network. Results shows that the proposed model are more robust under the biased network structure.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.