Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DeepWalking: Enabling Smartphone-based Walking Speed Estimation Using Deep Learning (1805.03368v2)

Published 9 May 2018 in cs.CY

Abstract: Walking speed estimation is an essential component of mobile apps in various fields such as fitness, transportation, navigation, and health-care. Most existing solutions are focused on specialized medical applications that utilize body-worn motion sensors. These approaches do not serve effectively the general use case of numerous apps where the user holding a smartphone tries to find his or her walking speed solely based on smartphone sensors. However, existing smartphone-based approaches fail to provide acceptable precision for walking speed estimation. This leads to a question: is it possible to achieve comparable speed estimation accuracy using a smartphone over wearable sensor based obtrusive solutions? We find the answer from advanced neural networks. In this paper, we present DeepWalking, the first deep learning-based walking speed estimation scheme for smartphone. A deep convolutional neural network (DCNN) is applied to automatically identify and extract the most effective features from the accelerometer and gyroscope data of smartphone and to train the network model for accurate speed estimation. Experiments are performed with 10 participants using a treadmill. The average root-mean-squared-error (RMSE) of estimated walking speed is 0.16m/s which is comparable to the results obtained by state-of-the-art approaches based on a number of body-worn sensors (i.e., RMSE of 0.11m/s). The results indicate that a smartphone can be a strong tool for walking speed estimation if the sensor data are effectively calibrated and supported by advanced deep learning techniques.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.