Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Capturing Edge Attributes via Network Embedding (1805.03280v2)

Published 8 May 2018 in cs.SI

Abstract: Network embedding, which aims to learn low-dimensional representations of nodes, has been used for various graph related tasks including visualization, link prediction and node classification. Most existing embedding methods rely solely on network structure. However, in practice we often have auxiliary information about the nodes and/or their interactions, e.g., content of scientific papers in co-authorship networks, or topics of communication in Twitter mention networks. Here we propose a novel embedding method that uses both network structure and edge attributes to learn better network representations. Our method jointly minimizes the reconstruction error for higher-order node neighborhood, social roles and edge attributes using a deep architecture that can adequately capture highly non-linear interactions. We demonstrate the efficacy of our model over existing state-of-the-art methods on a variety of real-world networks including collaboration networks, and social networks. We also observe that using edge attributes to inform network embedding yields better performance in downstream tasks such as link prediction and node classification.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.