Papers
Topics
Authors
Recent
2000 character limit reached

Learning image-to-image translation using paired and unpaired training samples (1805.03189v1)

Published 8 May 2018 in cs.CV

Abstract: Image-to-image translation is a general name for a task where an image from one domain is converted to a corresponding image in another domain, given sufficient training data. Traditionally different approaches have been proposed depending on whether aligned image pairs or two sets of (unaligned) examples from both domains are available for training. While paired training samples might be difficult to obtain, the unpaired setup leads to a highly under-constrained problem and inferior results. In this paper, we propose a new general purpose image-to-image translation model that is able to utilize both paired and unpaired training data simultaneously. We compare our method with two strong baselines and obtain both qualitatively and quantitatively improved results. Our model outperforms the baselines also in the case of purely paired and unpaired training data. To our knowledge, this is the first work to consider such hybrid setup in image-to-image translation.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.