Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phoneme-to-viseme mappings: the good, the bad, and the ugly (1805.02934v1)

Published 8 May 2018 in cs.CV, cs.SD, eess.AS, and eess.IV

Abstract: Visemes are the visual equivalent of phonemes. Although not precisely defined, a working definition of a viseme is "a set of phonemes which have identical appearance on the lips". Therefore a phoneme falls into one viseme class but a viseme may represent many phonemes: a many to one mapping. This mapping introduces ambiguity between phonemes when using viseme classifiers. Not only is this ambiguity damaging to the performance of audio-visual classifiers operating on real expressive speech, there is also considerable choice between possible mappings. In this paper we explore the issue of this choice of viseme-to-phoneme map. We show that there is definite difference in performance between viseme-to-phoneme mappings and explore why some maps appear to work better than others. We also devise a new algorithm for constructing phoneme-to-viseme mappings from labeled speech data. These new visemes, `Bear' visemes, are shown to perform better than previously known units.

Citations (55)

Summary

We haven't generated a summary for this paper yet.