Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Short-Cut Connections for Object Counting (1805.02919v2)

Published 8 May 2018 in cs.CV

Abstract: Object counting is an important task in computer vision due to its growing demand in applications such as traffic monitoring or surveillance. In this paper, we consider object counting as a learning problem of a joint feature extraction and pixel-wise object density estimation with Convolutional-Deconvolutional networks. We introduce a novel counting model, named Gated U-Net (GU-Net). Specifically, we propose to enrich the U-Net architecture with the concept of learnable short-cut connections. Standard short-cut connections are connections between layers in deep neural networks which skip at least one intermediate layer. Instead of simply setting short-cut connections, we propose to learn these connections from data. Therefore, our short-cuts can work as gating units, which optimize the flow of information between convolutional and deconvolutional layers in the U-Net architecture. We evaluate the introduced GU-Net architecture on three commonly used benchmark data sets for object counting. GU-Nets consistently outperform the base U-Net architecture, and achieve state-of-the-art performance.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube