Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Driving maneuvers prediction based on cognition-driven and data-driven method (1805.02895v1)

Published 8 May 2018 in cs.AI

Abstract: Advanced Driver Assistance Systems (ADAS) improve driving safety significantly. They alert drivers from unsafe traffic conditions when a dangerous maneuver appears. Traditional methods to predict driving maneuvers are mostly based on data-driven models alone. However, existing methods to understand the driver's intention remain an ongoing challenge due to a lack of intersection of human cognition and data analysis. To overcome this challenge, we propose a novel method that combines both the cognition-driven model and the data-driven model. We introduce a model named Cognitive Fusion-RNN (CF-RNN) which fuses the data inside the vehicle and the data outside the vehicle in a cognitive way. The CF-RNN model consists of two Long Short-Term Memory (LSTM) branches regulated by human reaction time. Experiments on the Brain4Cars benchmark dataset demonstrate that the proposed method outperforms previous methods and achieves state-of-the-art performance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.