Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

ReGAN: RE[LAX|BAR|INFORCE] based Sequence Generation using GANs (1805.02788v1)

Published 8 May 2018 in stat.ML and cs.LG

Abstract: Generative Adversarial Networks (GANs) have seen steep ascension to the peak of ML research zeitgeist in recent years. Mostly catalyzed by its success in the domain of image generation, the technique has seen wide range of adoption in a variety of other problem domains. Although GANs have had a lot of success in producing more realistic images than other approaches, they have only seen limited use for text sequences. Generation of longer sequences compounds this problem. Most recently, SeqGAN (Yu et al., 2017) has shown improvements in adversarial evaluation and results with human evaluation compared to a MLE based trained baseline. The main contributions of this paper are three-fold: 1. We show results for sequence generation using a GAN architecture with efficient policy gradient estimators, 2. We attain improved training stability, and 3. We perform a comparative study of recent unbiased low variance gradient estimation techniques such as REBAR (Tucker et al., 2017), RELAX (Grathwohl et al., 2018) and REINFORCE (Williams, 1992). Using a simple grammar on synthetic datasets with varying length, we indicate the quality of sequences generated by the model.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.