Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Relational Network for Skeleton-Based Action Recognition (1805.02556v4)

Published 7 May 2018 in cs.CV

Abstract: With the fast development of effective and low-cost human skeleton capture systems, skeleton-based action recognition has attracted much attention recently. Most existing methods use Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) to extract spatio-temporal information embedded in the skeleton sequences for action recognition. However, these approaches are limited in the ability of relational modeling in a single skeleton, due to the loss of important structural information when converting the raw skeleton data to adapt to the input format of CNN or RNN. In this paper, we propose an Attentional Recurrent Relational Network-LSTM (ARRN-LSTM) to simultaneously model spatial configurations and temporal dynamics in skeletons for action recognition. We introduce the Recurrent Relational Network to learn the spatial features in a single skeleton, followed by a multi-layer LSTM to learn the temporal features in the skeleton sequences. Between the two modules, we design an adaptive attentional module to focus attention on the most discriminative parts in the single skeleton. To exploit the complementarity from different geometries in the skeleton for sufficient relational modeling, we design a two-stream architecture to learn the structural features among joints and lines simultaneously. Extensive experiments are conducted on several popular skeleton datasets and the results show that the proposed approach achieves better results than most mainstream methods.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.