Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

An Operating System Level Data Migration Scheme in Hybrid DRAM-NVM Memory Architecture (1805.02514v1)

Published 4 May 2018 in cs.OS

Abstract: With the emergence of Non-Volatile Memories (NVMs) and their shortcomings such as limited endurance and high power consumption in write requests, several studies have suggested hybrid memory architecture employing both Dynamic Random Access Memory (DRAM) and NVM in a memory system. By conducting a comprehensive experiments, we have observed that such studies lack to consider very important aspects of hybrid memories including the effect of: a) data migrations on performance, b) data migrations on power, and c) the granularity of data migration. This paper presents an efficient data migration scheme at the Operating System level in a hybrid DRAMNVM memory architecture. In the proposed scheme, two Least Recently Used (LRU) queues, one for DRAM section and one for NVM section, are used for the sake of data migration. With careful characterization of the workloads obtained from PARSEC benchmark suite, the proposed scheme prevents unnecessary migrations and only allows migrations which benefits the system in terms of power and performance. The experimental results show that the proposed scheme can reduce the power consumption up to 79% compared to DRAM-only memory and up to 48% compared to the state-of-the art techniques.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube