Papers
Topics
Authors
Recent
2000 character limit reached

Modeling Multidimensional User Relevance in IR using Vector Spaces (1805.02184v1)

Published 6 May 2018 in cs.IR

Abstract: It has been shown that relevance judgment of documents is influenced by multiple factors beyond topicality. Some multidimensional user relevance models (MURM) proposed in literature have investigated the impact of different dimensions of relevance on user judgment. Our hypothesis is that a user might give more importance to certain relevance dimensions in a session which might change dynamically as the session progresses. This motivates the need to capture the weights of different relevance dimensions using feedback and build a model to rank documents for subsequent queries according to these weights. We propose a geometric model inspired by the mathematical framework of Quantum theory to capture the user's importance given to each dimension of relevance and test our hypothesis on data from a web search engine and TREC Session track.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.