Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Developing parsimonious ensembles using ensemble diversity within a reinforcement learning framework (1805.02103v2)

Published 5 May 2018 in cs.LG and stat.ML

Abstract: Heterogeneous ensembles built from the predictions of a wide variety and large number of diverse base predictors represent a potent approach to building predictive models for problems where the ideal base/individual predictor may not be obvious. Ensemble selection is an especially promising approach here, not only for improving prediction performance, but also because of its ability to select a collectively predictive subset, often a relatively small one, of the base predictors. In this paper, we present a set of algorithms that explicitly incorporate ensemble diversity, a known factor influencing predictive performance of ensembles, into a reinforcement learning framework for ensemble selection. We rigorously tested these approaches on several challenging problems and associated data sets, yielding that several of them produced more accurate ensembles than those that don't explicitly consider diversity. More importantly, these diversity-incorporating ensembles were much smaller in size, i.e., more parsimonious, than the latter types of ensembles. This can eventually aid the interpretation or reverse engineering of predictive models assimilated into the resultant ensemble(s).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.