The 2-adic complexity of a class of binary sequences with optimal autocorrelation magnitude (1805.01990v1)
Abstract: Recently, a class of binary sequences with optimal autocorrelation magnitude has been presented by Su et al. based on interleaving technique and Ding-Helleseth-Lam sequences (Des. Codes Cryptogr., https://doi.org/10.1007/s10623-017-0398-5). And its linear complexity has been proved to be large enough to resist the B-M Algorighm (BMA) by Fan (Des. Codes Cryptogr., https://doi.org/10.1007/s10623-018-0456-7). In this paper, we study the 2-adic complexity of this class of binary sequences. Our result shows that the 2-adic complexity of this class of sequence is no less than one half of its period, i.e., its 2-adic complexity is large enough to resist the Rational Aproximation Algorithm (RAA).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.