Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Local angles and dimension estimation from data on manifolds (1805.01577v1)

Published 4 May 2018 in math.ST, stat.ML, and stat.TH

Abstract: For data living in a manifold $M\subseteq \mathbb{R}m$ and a point $p\in M$ we consider a statistic $U_{k,n}$ which estimates the variance of the angle between pairs of vectors $X_i-p$ and $X_j-p$, for data points $X_i$, $X_j$, near $p$, and evaluate this statistic as a tool for estimation of the intrinsic dimension of $M$ at $p$. Consistency of the local dimension estimator is established and the asymptotic distribution of $U_{k,n}$ is found under minimal regularity assumptions. Performance of the proposed methodology is compared against state-of-the-art methods on simulated data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.