Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Deep Learning Model with Hierarchical LSTMs and Supervised Attention for Anti-Phishing (1805.01554v1)

Published 3 May 2018 in cs.CR, cs.LG, and stat.ML

Abstract: Anti-phishing aims to detect phishing content/documents in a pool of textual data. This is an important problem in cybersecurity that can help to guard users from fraudulent information. Natural language processing (NLP) offers a natural solution for this problem as it is capable of analyzing the textual content to perform intelligent recognition. In this work, we investigate state-of-the-art techniques for text categorization in NLP to address the problem of anti-phishing for emails (i.e, predicting if an email is phishing or not). These techniques are based on deep learning models that have attracted much attention from the community recently. In particular, we present a framework with hierarchical long short-term memory networks (H-LSTMs) and attention mechanisms to model the emails simultaneously at the word and the sentence level. Our expectation is to produce an effective model for anti-phishing and demonstrate the effectiveness of deep learning for problems in cybersecurity.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.