Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Approximating $(k,\ell)$-center clustering for curves (1805.01547v2)

Published 3 May 2018 in cs.CG and cs.IR

Abstract: The Euclidean $k$-center problem is a classical problem that has been extensively studied in computer science. Given a set $\mathcal{G}$ of $n$ points in Euclidean space, the problem is to determine a set $\mathcal{C}$ of $k$ centers (not necessarily part of $\mathcal{G}$) such that the maximum distance between a point in $\mathcal{G}$ and its nearest neighbor in $\mathcal{C}$ is minimized. In this paper we study the corresponding $(k,\ell)$-center problem for polygonal curves under the Fr\'echet distance, that is, given a set $\mathcal{G}$ of $n$ polygonal curves in $\mathbb{R}d$, each of complexity $m$, determine a set $\mathcal{C}$ of $k$ polygonal curves in $\mathbb{R}d$, each of complexity $\ell$, such that the maximum Fr\'echet distance of a curve in $\mathcal{G}$ to its closest curve in $\mathcal{C}$ is minimized. In this paper, we substantially extend and improve the known approximation bounds for curves in dimension $2$ and higher. We show that, if $\ell$ is part of the input, then there is no polynomial-time approximation scheme unless $\mathsf{P}=\mathsf{NP}$. Our constructions yield different bounds for one and two-dimensional curves and the discrete and continuous Fr\'echet distance. In the case of the discrete Fr\'echet distance on two-dimensional curves, we show hardness of approximation within a factor close to $2.598$. This result also holds when $k=1$, and the $\mathsf{NP}$-hardness extends to the case that $\ell=\infty$, i.e., for the problem of computing the minimum-enclosing ball under the Fr\'echet distance. Finally, we observe that a careful adaptation of Gonzalez' algorithm in combination with a curve simplification yields a $3$-approximation in any dimension, provided that an optimal simplification can be computed exactly. We conclude that our approximation bounds are close to being tight.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.