Papers
Topics
Authors
Recent
2000 character limit reached

A Multi-component CNN-RNN Approach for Dimensional Emotion Recognition in-the-wild (1805.01452v5)

Published 3 May 2018 in cs.CV, cs.AI, cs.HC, eess.IV, and stat.ML

Abstract: This paper presents our approach to the One-Minute Gradual-Emotion Recognition (OMG-Emotion) Challenge, focusing on dimensional emotion recognition through visual analysis of the provided emotion videos. The approach is based on a Convolutional and Recurrent (CNN-RNN) deep neural architecture we have developed for the relevant large AffWild Emotion Database. We extended and adapted this architecture, by letting a combination of multiple features generated in the CNN component be explored by RNN subnets. Our target has been to obtain best performance on the OMG-Emotion visual validation data set, while learning the respective visual training data set. Extended experimentation has led to best architectures for the estimation of the values of the valence and arousal emotion dimensions over these data sets.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.