Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Multi-component CNN-RNN Approach for Dimensional Emotion Recognition in-the-wild (1805.01452v5)

Published 3 May 2018 in cs.CV, cs.AI, cs.HC, eess.IV, and stat.ML

Abstract: This paper presents our approach to the One-Minute Gradual-Emotion Recognition (OMG-Emotion) Challenge, focusing on dimensional emotion recognition through visual analysis of the provided emotion videos. The approach is based on a Convolutional and Recurrent (CNN-RNN) deep neural architecture we have developed for the relevant large AffWild Emotion Database. We extended and adapted this architecture, by letting a combination of multiple features generated in the CNN component be explored by RNN subnets. Our target has been to obtain best performance on the OMG-Emotion visual validation data set, while learning the respective visual training data set. Extended experimentation has led to best architectures for the estimation of the values of the valence and arousal emotion dimensions over these data sets.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.