Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improving a Neural Semantic Parser by Counterfactual Learning from Human Bandit Feedback (1805.01252v2)

Published 3 May 2018 in cs.CL, cs.LG, and stat.ML

Abstract: Counterfactual learning from human bandit feedback describes a scenario where user feedback on the quality of outputs of a historic system is logged and used to improve a target system. We show how to apply this learning framework to neural semantic parsing. From a machine learning perspective, the key challenge lies in a proper reweighting of the estimator so as to avoid known degeneracies in counterfactual learning, while still being applicable to stochastic gradient optimization. To conduct experiments with human users, we devise an easy-to-use interface to collect human feedback on semantic parses. Our work is the first to show that semantic parsers can be improved significantly by counterfactual learning from logged human feedback data.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.