Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Binarizer at SemEval-2018 Task 3: Parsing dependency and deep learning for irony detection (1805.01112v1)

Published 3 May 2018 in cs.CL

Abstract: In this paper, we describe the system submitted for the SemEval 2018 Task 3 (Irony detection in English tweets) Subtask A by the team Binarizer. Irony detection is a key task for many natural language processing works. Our method treats ironical tweets to consist of smaller parts containing different emotions. We break down tweets into separate phrases using a dependency parser. We then embed those phrases using an LSTM-based neural network model which is pre-trained to predict emoticons for tweets. Finally, we train a fully-connected network to achieve classification.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.