Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Vision-based Structural Inspection using Multiscale Deep Convolutional Neural Networks (1805.01055v1)

Published 2 May 2018 in cs.CV

Abstract: Current methods of practice for inspection of civil infrastructure typically involve visual assessments conducted manually by trained inspectors. For post-earthquake structural inspections, the number of structures to be inspected often far exceeds the capability of the available inspectors. The labor intensive and time consuming natures of manual inspection have engendered research into development of algorithms for automated damage identification using computer vision techniques. In this paper, a novel damage localization and classification technique based on a state of the art computer vision algorithm is presented to address several key limitations of current computer vision techniques. The proposed algorithm carries out a pixel-wise classification of each image at multiple scales using a deep convolutional neural network and can recognize 6 different types of damage. The resulting output is a segmented image where the portion of the image representing damage is outlined and classified as one of the trained damage categories. The proposed method is evaluated in terms of pixel accuracy and the application of the method to real world images is shown.

Citations (83)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.