Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

EML-NET:An Expandable Multi-Layer NETwork for Saliency Prediction (1805.01047v2)

Published 2 May 2018 in cs.CV

Abstract: Saliency prediction can benefit from training that involves scene understanding that may be tangential to the central task; this may include understanding places, spatial layout, objects or involve different datasets and their bias. One can combine models, but to do this in a sophisticated manner can be complex, and also result in unwieldy networks or produce competing objectives that are hard to balance. In this paper, we propose a scalable system to leverage multiple powerful deep CNN models to better extract visual features for saliency prediction. Our design differs from previous studies in that the whole system is trained in an almost end-to-end piece-wise fashion. The encoder and decoder components are separately trained to deal with complexity tied to the computational paradigm and required space. Furthermore, the encoder can contain more than one CNN model to extract features, and models can have different architectures or be pre-trained on different datasets. This parallel design yields a better computational paradigm overcoming limits to the variety of information or inference that can be combined at the encoder stage towards deeper networks and a more powerful encoding. Our network can be easily expanded almost without any additional cost, and other pre-trained CNN models can be incorporated availing a wider range of visual knowledge. We denote our expandable multi-layer network as EML-NET and our method achieves the state-of-the-art results on the public saliency benchmarks, SALICON, MIT300 and CAT2000.

Citations (157)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.