Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-Resolution Multi-Modal Sensor Fusion For Remote Sensing Data With Label Uncertainty (1805.00930v2)

Published 2 May 2018 in cs.CV

Abstract: In remote sensing, each sensor can provide complementary or reinforcing information. It is valuable to fuse outputs from multiple sensors to boost overall performance. Previous supervised fusion methods often require accurate labels for each pixel in the training data. However, in many remote sensing applications, pixel-level labels are difficult or infeasible to obtain. In addition, outputs from multiple sensors often have different resolution or modalities. For example, rasterized hyperspectral imagery presents data in a pixel grid while airborne Light Detection and Ranging (LiDAR) generates dense three-dimensional (3D) point clouds. It is often difficult to directly fuse such multi-modal, multi-resolution data. To address these challenges, we present a novel Multiple Instance Multi-Resolution Fusion (MIMRF) framework that can fuse multi-resolution and multi-modal sensor outputs while learning from automatically-generated, imprecisely-labeled data. Experiments were conducted on the MUUFL Gulfport hyperspectral and LiDAR data set and a remotely-sensed soybean and weed data set. Results show improved, consistent performance on scene understanding and agricultural applications when compared to traditional fusion methods.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)