Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Negotiation Strategies for Agents with Ordinal Preferences (1805.00913v1)

Published 2 May 2018 in cs.GT and cs.MA

Abstract: Negotiation is a very common interaction between automated agents. Many common negotiation protocols work with cardinal utilities, even though ordinal preferences, which only rank the outcomes, are easier to elicit from humans. In this work we concentrate on negotiation with ordinal preferences over a finite set of outcomes. We study an intuitive protocol for bilateral negotiation, where the two parties make offers alternately. We analyze the negotiation protocol under different settings. First, we assume that each party has full information about the other party's preference order. We provide elegant strategies that specify a sub-game perfect equilibrium for the agents. We further show how the studied negotiation protocol almost completely implements a known bargaining rule. Finally, we analyze the no information setting. We study several solution concepts that are distribution-free, and analyze both the case where neither party knows the preference order of the other party, and the case where only one party is uninformed.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.