Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximate Temporal Difference Learning is a Gradient Descent for Reversible Policies (1805.00869v1)

Published 2 May 2018 in cs.LG, math.OC, and stat.ML

Abstract: In reinforcement learning, temporal difference (TD) is the most direct algorithm to learn the value function of a policy. For large or infinite state spaces, exact representations of the value function are usually not available, and it must be approximated by a function in some parametric family. However, with \emph{nonlinear} parametric approximations (such as neural networks), TD is not guaranteed to converge to a good approximation of the true value function within the family, and is known to diverge even in relatively simple cases. TD lacks an interpretation as a stochastic gradient descent of an error between the true and approximate value functions, which would provide such guarantees. We prove that approximate TD is a gradient descent provided the current policy is \emph{reversible}. This holds even with nonlinear approximations. A policy with transition probabilities $P(s,s')$ between states is reversible if there exists a function $\mu$ over states such that $\frac{P(s,s')}{P(s',s)}=\frac{\mu(s')}{\mu(s)}$. In particular, every move can be undone with some probability. This condition is restrictive; it is satisfied, for instance, for a navigation problem in any unoriented graph. In this case, approximate TD is exactly a gradient descent of the \emph{Dirichlet norm}, the norm of the difference of \emph{gradients} between the true and approximate value functions. The Dirichlet norm also controls the bias of approximate policy gradient. These results hold even with no decay factor ($\gamma=1$) and do not rely on contractivity of the BeLLMan operator, thus proving stability of TD even with $\gamma=1$ for reversible policies.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.