Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Spectral clustering algorithms for the detection of clusters in block-cyclic and block-acyclic graphs (1805.00862v1)

Published 2 May 2018 in cs.DS, cs.CV, cs.DM, and stat.ML

Abstract: We propose two spectral algorithms for partitioning nodes in directed graphs respectively with a cyclic and an acyclic pattern of connection between groups of nodes. Our methods are based on the computation of extremal eigenvalues of the transition matrix associated to the directed graph. The two algorithms outperform state-of-the art methods for directed graph clustering on synthetic datasets, including methods based on blockmodels, bibliometric symmetrization and random walks. Our algorithms have the same space complexity as classical spectral clustering algorithms for undirected graphs and their time complexity is also linear in the number of edges in the graph. One of our methods is applied to a trophic network based on predator-prey relationships. It successfully extracts common categories of preys and predators encountered in food chains. The same method is also applied to highlight the hierarchical structure of a worldwide network of Autonomous Systems depicting business agreements between Internet Service Providers.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.