Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral clustering algorithms for the detection of clusters in block-cyclic and block-acyclic graphs (1805.00862v1)

Published 2 May 2018 in cs.DS, cs.CV, cs.DM, and stat.ML

Abstract: We propose two spectral algorithms for partitioning nodes in directed graphs respectively with a cyclic and an acyclic pattern of connection between groups of nodes. Our methods are based on the computation of extremal eigenvalues of the transition matrix associated to the directed graph. The two algorithms outperform state-of-the art methods for directed graph clustering on synthetic datasets, including methods based on blockmodels, bibliometric symmetrization and random walks. Our algorithms have the same space complexity as classical spectral clustering algorithms for undirected graphs and their time complexity is also linear in the number of edges in the graph. One of our methods is applied to a trophic network based on predator-prey relationships. It successfully extracts common categories of preys and predators encountered in food chains. The same method is also applied to highlight the hierarchical structure of a worldwide network of Autonomous Systems depicting business agreements between Internet Service Providers.

Citations (6)

Summary

We haven't generated a summary for this paper yet.