Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Maximum cuts in edge-colored graphs (1805.00858v1)

Published 2 May 2018 in cs.DS, cs.CG, cs.DM, and math.CO

Abstract: The input of the Maximum Colored Cut problem consists of a graph $G=(V,E)$ with an edge-coloring $c:E\to {1,2,3,\ldots , p}$ and a positive integer $k$, and the question is whether $G$ has a nontrivial edge cut using at least $k$ colors. The Colorful Cut problem has the same input but asks for a nontrivial edge cut using all $p$ colors. Unlike what happens for the classical Maximum Cut problem, we prove that both problems are NP-complete even on complete, planar, or bounded treewidth graphs. Furthermore, we prove that Colorful Cut is NP-complete even when each color class induces a clique of size at most 3, but is trivially solvable when each color induces a $K_2$. On the positive side, we prove that Maximum Colored Cut is fixed-parameter tractable when parameterized by either $k$ or $p$, by constructing a cubic kernel in both cases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.