Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Multimodal Utterance-level Affect Analysis using Visual, Audio and Text Features (1805.00625v2)

Published 2 May 2018 in eess.IV, cs.CL, and cs.CV

Abstract: The integration of information across multiple modalities and across time is a promising way to enhance the emotion recognition performance of affective systems. Much previous work has focused on instantaneous emotion recognition. The 2018 One-Minute Gradual-Emotion Recognition (OMG-Emotion) challenge, which was held in conjunction with the IEEE World Congress on Computational Intelligence, encouraged participants to address long-term emotion recognition by integrating cues from multiple modalities, including facial expression, audio and language. Intuitively, a multi-modal inference network should be able to leverage information from each modality and their correlations to improve recognition over that achievable by a single modality network. We describe here a multi-modal neural architecture that integrates visual information over time using an LSTM, and combines it with utterance level audio and text cues to recognize human sentiment from multimodal clips. Our model outperforms the unimodal baseline, achieving the concordance correlation coefficients (CCC) of 0.400 on the arousal task, and 0.353 on the valence task.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.