Emergent Mind

$\ell_1$-regression with Heavy-tailed Distributions

(1805.00616)
Published May 2, 2018 in cs.LG and stat.ML

Abstract

In this paper, we consider the problem of linear regression with heavy-tailed distributions. Different from previous studies that use the squared loss to measure the performance, we choose the absolute loss, which is capable of estimating the conditional median. To address the challenge that both the input and output could be heavy-tailed, we propose a truncated minimization problem, and demonstrate that it enjoys an $\widetilde{O}(\sqrt{d/n})$ excess risk, where $d$ is the dimensionality and $n$ is the number of samples. Compared with traditional work on $\ell1$-regression, the main advantage of our result is that we achieve a high-probability risk bound without exponential moment conditions on the input and output. Furthermore, if the input is bounded, we show that the classical empirical risk minimization is competent for $\ell1$-regression even when the output is heavy-tailed.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.