Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Real-time Air Pollution prediction model based on Spatiotemporal Big data (1805.00432v3)

Published 5 Apr 2018 in cs.CY, cs.IR, and cs.LG

Abstract: Air pollution is one of the most concerns for urban areas. Many countries have constructed monitoring stations to hourly collect pollution values. Recently, there is a research in Daegu city, Korea for real-time air quality monitoring via sensors installed on taxis running across the whole city. The collected data is huge (1-second interval) and in both Spatial and Temporal format. In this paper, based on this spatiotemporal Big data, we propose a real-time air pollution prediction model based on Convolutional Neural Network (CNN) algorithm for image-like Spatial distribution of air pollution. Regarding to Temporal information in the data, we introduce a combination of a Long Short-Term Memory (LSTM) unit for time series data and a Neural Network model for other air pollution impact factors such as weather conditions to build a hybrid prediction model. This model is simple in architecture but still brings good prediction ability.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.