Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of Residual Networks for Image Recognition (1805.00325v1)

Published 21 Apr 2018 in cs.CV

Abstract: Deep neural networks demonstrate to have a high performance on image classification tasks while being more difficult to train. Due to the complexity and vanishing gradient problem, it normally takes a lot of time and more computational power to train deeper neural networks. Deep residual networks (ResNets) can make the training process faster and attain more accuracy compared to their equivalent neural networks. ResNets achieve this improvement by adding a simple skip connection parallel to the layers of convolutional neural networks. In this project we first design a ResNet model that can perform the image classification task on the Tiny ImageNet dataset with a high accuracy, then we compare the performance of this ResNet model with its equivalent Convolutional Network (ConvNet). Our findings illustrate that ResNets are more prone to overfitting despite their higher accuracy. Several methods to prevent overfitting such as adding dropout layers and stochastic augmentation of the training dataset has been studied in this work.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (41)

Summary

We haven't generated a summary for this paper yet.