Efficient Graph Computation for Node2Vec (1805.00280v1)
Abstract: Node2Vec is a state-of-the-art general-purpose feature learning method for network analysis. However, current solutions cannot run Node2Vec on large-scale graphs with billions of vertices and edges, which are common in real-world applications. The existing distributed Node2Vec on Spark incurs significant space and time overhead. It runs out of memory even for mid-sized graphs with millions of vertices. Moreover, it considers at most 30 edges for every vertex in generating random walks, causing poor result quality. In this paper, we propose Fast-Node2Vec, a family of efficient Node2Vec random walk algorithms on a Pregel-like graph computation framework. Fast-Node2Vec computes transition probabilities during random walks to reduce memory space consumption and computation overhead for large-scale graphs. The Pregel-like scheme avoids space and time overhead of Spark's read-only RDD structures and shuffle operations. Moreover, we propose a number of optimization techniques to further reduce the computation overhead for popular vertices with large degrees. Empirical evaluation show that Fast-Node2Vec is capable of computing Node2Vec on graphs with billions of vertices and edges on a mid-sized machine cluster. Compared to Spark-Node2Vec, Fast-Node2Vec achieves 7.7--122x speedups.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.