Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stochastic Shortest Paths and Weight-Bounded Properties in Markov Decision Processes (1804.11301v1)

Published 30 Apr 2018 in cs.LO

Abstract: The paper deals with finite-state Markov decision processes (MDPs) with integer weights assigned to each state-action pair. New algorithms are presented to classify end components according to their limiting behavior with respect to the accumulated weights. These algorithms are used to provide solutions for two types of fundamental problems for integer-weighted MDPs. First, a polynomial-time algorithm for the classical stochastic shortest path problem is presented, generalizing known results for special classes of weighted MDPs. Second, qualitative probability constraints for weight-bounded (repeated) reachability conditions are addressed. Among others, it is shown that the problem to decide whether a disjunction of weight-bounded reachability conditions holds almost surely under some scheduler belongs to $\textrm{NP}\cap \textrm{coNP}$, is solvable in pseudo-polynomial time and is at least as hard as solving two-player mean-payoff games, while the corresponding problem for universal quantification over schedulers is solvable in polynomial time.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.