Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Colouring $(P_r+P_s)$-Free Graphs (1804.11091v3)

Published 30 Apr 2018 in cs.DS and cs.CC

Abstract: The $k$-Colouring problem is to decide if the vertices of a graph can be coloured with at most $k$ colours for a fixed integer $k$ such that no two adjacent vertices are coloured alike. If each vertex u must be assigned a colour from a prescribed list $L(u) \subseteq {1,\cdots, k}$, then we obtain the List $k$-Colouring problem. A graph $G$ is $H$-free if $G$ does not contain $H$ as an induced subgraph. We continue an extensive study into the complexity of these two problems for $H$-free graphs. The graph $P_r+P_s$ is the disjoint union of the $r$-vertex path $P_r$ and the $s$-vertex path $P_s$. We prove that List $3$-Colouring is polynomial-time solvable for $(P_2+P_5)$-free graphs and for $(P_3+P_4)$-free graphs. Combining our results with known results yields complete complexity classifications of $3$-Colouring and List $3$-Colouring on $H$-free graphs for all graphs $H$ up to seven vertices.

Citations (15)

Summary

We haven't generated a summary for this paper yet.