Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

OPA2Vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction (1804.10922v1)

Published 29 Apr 2018 in cs.CL, cs.AI, and cs.CE

Abstract: Motivation: Ontologies are widely used in biology for data annotation, integration, and analysis. In addition to formally structured axioms, ontologies contain meta-data in the form of annotation axioms which provide valuable pieces of information that characterize ontology classes. Annotations commonly used in ontologies include class labels, descriptions, or synonyms. Despite being a rich source of semantic information, the ontology meta-data are generally unexploited by ontology-based analysis methods such as semantic similarity measures. Results: We propose a novel method, OPA2Vec, to generate vector representations of biological entities in ontologies by combining formal ontology axioms and annotation axioms from the ontology meta-data. We apply a Word2Vec model that has been pre-trained on PubMed abstracts to produce feature vectors from our collected data. We validate our method in two different ways: first, we use the obtained vector representations of proteins as a similarity measure to predict protein-protein interaction (PPI) on two different datasets. Second, we evaluate our method on predicting gene-disease associations based on phenotype similarity by generating vector representations of genes and diseases using a phenotype ontology, and applying the obtained vectors to predict gene-disease associations. These two experiments are just an illustration of the possible applications of our method. OPA2Vec can be used to produce vector representations of any biomedical entity given any type of biomedical ontology. Availability: https://github.com/bio-ontology-research-group/opa2vec Contact: [email protected] and [email protected].

Citations (135)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.