Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Unified Framework for Domain Adaptation using Metric Learning on Manifolds (1804.10834v1)

Published 28 Apr 2018 in cs.LG and stat.ML

Abstract: We present a novel framework for domain adaptation, whereby both geometric and statistical differences between a labeled source domain and unlabeled target domain can be integrated by exploiting the curved Riemannian geometry of statistical manifolds. Our approach is based on formulating transfer from source to target as a problem of geometric mean metric learning on manifolds. Specifically, we exploit the curved Riemannian manifold geometry of symmetric positive definite (SPD) covariance matrices. We exploit a simple but important observation that as the space of covariance matrices is both a Riemannian space as well as a homogeneous space, the shortest path geodesic between two covariances on the manifold can be computed analytically. Statistics on the SPD matrix manifold, such as the geometric mean of two matrices can be reduced to solving the well-known Riccati equation. We show how the Ricatti-based solution can be constrained to not only reduce the statistical differences between the source and target domains, such as aligning second order covariances and minimizing the maximum mean discrepancy, but also the underlying geometry of the source and target domains using diffusions on the underlying source and target manifolds. A key strength of our proposed approach is that it enables integrating multiple sources of variation between source and target in a unified way, by reducing the combined objective function to a nested set of Ricatti equations where the solution can be represented by a cascaded series of geometric mean computations. In addition to showing the theoretical optimality of our solution, we present detailed experiments using standard transfer learning testbeds from computer vision comparing our proposed algorithms to past work in domain adaptation, showing improved results over a large variety of previous methods.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.