Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Precise Box Score: Extract More Information from Datasets to Improve the Performance of Face Detection (1804.10743v1)

Published 28 Apr 2018 in cs.CV

Abstract: For the training of face detection network based on R-CNN framework, anchors are assigned to be positive samples if intersection-over-unions (IoUs) with ground-truth are higher than the first threshold(such as 0.7); and to be negative samples if their IoUs are lower than the second threshold(such as 0.3). And the face detection model is trained by the above labels. However, anchors with IoU between first threshold and second threshold are not used. We propose a novel training strategy, Precise Box Score(PBS), to train object detection models. The proposed training strategy uses the anchors with IoUs between the first and second threshold, which can consistently improve the performance of face detection. Our proposed training strategy extracts more information from datasets, making better utilization of existing datasets. What's more, we also introduce a simple but effective model compression method(SEMCM), which can boost the performance of face detectors further. Experimental results show that the performance of face detection network can consistently be improved based on our proposed scheme.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube