Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient Non-linear Equalization for 1-bit Quantized Cyclic Prefix-Free Massive MIMO Systems (1804.10695v2)

Published 27 Apr 2018 in cs.IT and math.IT

Abstract: This paper addresses the problem of data detection for a massive Multiple-Input-Multiple-Output (MIMO) base station which utilizes 1-bit Analog-to-Digital Converters (ADCs) for quantizing the uplink signal. The existing literature on quantized massive MIMO systems deals with Cyclic Prefix (CP) transmission over frequency-selective channels. In this paper, we propose a computationally efficient block processing equalizer based on the Expectation Maximization (EM) algorithm in CP-free transmission for 1-bit quantized systems. We investigate the optimal block length and overlapping factor in relation to the Channel Impulse Response (CIR) length based on the Bit Error-Rate (BER) performance metric. As EM is a non-linear algorithm, the optimal estimate is found iteratively depending on the initial starting point of the algorithm. Through numerical simulations we show that initializing the EM-algorithm with a Wiener-Filter (WF) estimate, which takes the underlying quantization into account, achieves superior BER-performance compared to initialization with other starting points.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.