Papers
Topics
Authors
Recent
2000 character limit reached

Localized Traffic Sign Detection with Multi-scale Deconvolution Networks (1804.10428v2)

Published 27 Apr 2018 in cs.CV

Abstract: Autonomous driving is becoming a future practical lifestyle greatly driven by deep learning. Specifically, an effective traffic sign detection by deep learning plays a critical role for it. However, different countries have different sets of traffic signs, making localized traffic sign recognition model training a tedious and daunting task. To address the issues of taking amount of time to compute complicate algorithm and low ratio of detecting blurred and sub-pixel images of localized traffic signs, we propose Multi-Scale Deconvolution Networks (MDN), which flexibly combines multi-scale convolutional neural network with deconvolution sub-network, leading to efficient and reliable localized traffic sign recognition model training. It is demonstrated that the proposed MDN is effective compared with classical algorithms on the benchmarks of the localized traffic sign, such as Chinese Traffic Sign Dataset (CTSD), and the German Traffic Sign Benchmarks (GTSRB).

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.