Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Candidate Labeling for Crowd Learning (1804.10023v2)

Published 26 Apr 2018 in stat.ML and cs.LG

Abstract: Crowdsourcing has become very popular among the machine learning community as a way to obtain labels that allow a ground truth to be estimated for a given dataset. In most of the approaches that use crowdsourced labels, annotators are asked to provide, for each presented instance, a single class label. Such a request could be inefficient, that is, considering that the labelers may not be experts, that way to proceed could fail to take real advantage of the knowledge of the labelers. In this paper, the use of candidate labeling for crowd learning is proposed, where the annotators may provide more than a single label per instance to try not to miss the real label. The main hypothesis is that, by allowing candidate labeling, knowledge can be extracted from the labelers more efficiently by than in the standard crowd learning scenario. Empirical evidence which supports that hypothesis is presented.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.