Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Competitive Learning Enriches Learning Representation and Accelerates the Fine-tuning of CNNs (1804.09859v1)

Published 26 Apr 2018 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: In this study, we propose the integration of competitive learning into convolutional neural networks (CNNs) to improve the representation learning and efficiency of fine-tuning. Conventional CNNs use back propagation learning, and it enables powerful representation learning by a discrimination task. However, it requires huge amount of labeled data, and acquisition of labeled data is much harder than that of unlabeled data. Thus, efficient use of unlabeled data is getting crucial for DNNs. To address the problem, we introduce unsupervised competitive learning into the convolutional layer, and utilize unlabeled data for effective representation learning. The results of validation experiments using a toy model demonstrated that strong representation learning effectively extracted bases of images into convolutional filters using unlabeled data, and accelerated the speed of the fine-tuning of subsequent supervised back propagation learning. The leverage was more apparent when the number of filters was sufficiently large, and, in such a case, the error rate steeply decreased in the initial phase of fine-tuning. Thus, the proposed method enlarged the number of filters in CNNs, and enabled a more detailed and generalized representation. It could provide a possibility of not only deep but broad neural networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.