Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

HG-means: A scalable hybrid genetic algorithm for minimum sum-of-squares clustering (1804.09813v2)

Published 25 Apr 2018 in cs.LG and stat.ML

Abstract: Minimum sum-of-squares clustering (MSSC) is a widely used clustering model, of which the popular K-means algorithm constitutes a local minimizer. It is well known that the solutions of K-means can be arbitrarily distant from the true MSSC global optimum, and dozens of alternative heuristics have been proposed for this problem. However, no other algorithm has been predominantly adopted in the literature. This may be related to differences of computational effort, or to the assumption that a near-optimal solution of the MSSC has only a marginal impact on clustering validity. In this article, we dispute this belief. We introduce an efficient population-based metaheuristic that uses K-means as a local search in combination with problem-tailored crossover, mutation, and diversification operators. This algorithm can be interpreted as a multi-start K-means, in which the initial center positions are carefully sampled based on the search history. The approach is scalable and accurate, outperforming all recent state-of-the-art algorithms for MSSC in terms of solution quality, measured by the depth of local minima. This enhanced accuracy leads to clusters which are significantly closer to the ground truth than those of other algorithms, for overlapping Gaussian-mixture datasets with a large number of features. Therefore, improved global optimization methods appear to be essential to better exploit the MSSC model in high dimension.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.