The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression (1804.09753v1)
Abstract: This paper rigorously establishes that the existence of the maximum likelihood estimate (MLE) in high-dimensional logistic regression models with Gaussian covariates undergoes a sharp `phase transition'. We introduce an explicit boundary curve $h_{\text{MLE}}$, parameterized by two scalars measuring the overall magnitude of the unknown sequence of regression coefficients, with the following property: in the limit of large sample sizes $n$ and number of features $p$ proportioned in such a way that $p/n \rightarrow \kappa$, we show that if the problem is sufficiently high dimensional in the sense that $\kappa > h_{\text{MLE}}$, then the MLE does not exist with probability one. Conversely, if $\kappa < h_{\text{MLE}}$, the MLE asymptotically exists with probability one.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.