Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Structure of Unique Shortest Paths in Graphs (1804.09745v2)

Published 25 Apr 2018 in cs.DS and math.CO

Abstract: This paper develops a structural theory of unique shortest paths in real-weighted graphs. Our main goal is to characterize exactly which sets of node sequences, which we call path systems, can be realized as unique shortest paths in a graph with arbitrary real edge weights. We say that such a path system is strongly metrizable. An easy fact implicit in the literature is that a strongly metrizable path system must be consistent, meaning that no two of its paths may intersect, split apart, and then intersect again. Our main result characterizes strong metrizability via some new forbidden intersection patterns along these lines. In other words, we describe a family of forbidden patterns beyond consistency, and we prove that a path system is strongly metrizable if and only if it is consistent and it avoids all of the patterns in this family. We offer separate (but closely related) characterizations in this way for the settings of directed, undirected, and directed acyclic graphs. Our characterizations are based on a new connection between shortest paths and topology; in particular, our new forbidden patterns are in natural correspondence with two-colored topological $2$-manifolds, which we visualize as polyhedra. We believe that this connection may be of independent interest, and we further show that it implies some additional structural corollaries that seem to suggest new and possibly deep-rooted connections between these areas.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)