Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Incremental Optimization of Independent Sets under Reachability Constraints (1804.09422v1)

Published 25 Apr 2018 in cs.DM

Abstract: We introduce a new framework for reconfiguration problems, and apply it to independent sets as the first example. Suppose that we are given an independent set $I_0$ of a graph $G$, and an integer $l \ge 0$ which represents a lower bound on the size of any independent set of $G$. Then, we are asked to find an independent set of $G$ having the maximum size among independent sets that are reachable from $I_0$ by either adding or removing a single vertex at a time such that all intermediate independent sets are of size at least $l$. We show that this problem is PSPACE-hard even for bounded pathwidth graphs, and remains NP-hard for planar graphs. On the other hand, we give a linear-time algorithm to solve the problem for chordal graphs. We also study the fixed-parameter (in)tractability of the problem with respect to the following three parameters: the degeneracy $d$ of an input graph, a lower bound $l$ on the size of the independent sets, and a lower bound $s$ on the solution size. We show that the problem is fixed-parameter intractable when only one of $d$, $l$, and $s$ is taken as a parameter. On the other hand, we give a fixed-parameter algorithm when parameterized by $s+d$; this result implies that the problem parameterized only by $s$ is fixed-parameter tractable for planar graphs, and for bounded treewidth graphs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.